
JAGAL Tutorial
Documentation & Code Examples for the Java Graph Library

Adrian Lange

1 Introduction

The Java Graph Library (JAGAL) is a Java library for modelling directed graphs. It
comes with implementations of various types of graphs and transition systems, as well as
utilities for their modification and traversal.

Its key features include among others:

• Implementation of directed graphs

• Implementation of directed weighted graphs

• Graph algorithms (Tarjan for SCCs)

• Graph visualization (Circle layout, topological layout)

• Graph traversal (depth-first-search, breadth-first-search)

• Traversal utilities (Predecessors, Siblings, Cycles, . . . )

• Implementation of Transition Systems

• Implementation of Labelled Transition Systems

This document is a mix of a programming tutorial and a library documentation, where
the features get demonstrated with some visualisations and minimal programming code
examples.

The examples in this document have been tested against the JAGAL release version
1.0.0, which can be found at https://github.com/iig-uni-freiburg/JAGAL. This doc-
ument was last updated on July 29, 2015.

1.1 Library Dependencies

JAGAL builds upon the Java library TOVAL, which is a set of Java classes for common
programming issues. It is located under https://github.com/GerdHolz/TOVAL and must
be added to the class path to be able to use JAGAL.

For the visualization of graphs, JAGAL uses the JGraphX library, which is a Java Swing
diagramming library specialized on node-edge graphs. JGraphX can be downloaded under
https://github.com/jgraph/jgraphx.

1

https://github.com/iig-uni-freiburg/JAGAL
https://github.com/GerdHolz/TOVAL
https://github.com/jgraph/jgraphx


1.2 Package Structure

The packages in de.uni.freiburg.iig.telematik.jagal are logically divided into the
following sub-packages. Methods of data structure defining classes like graphs and tran-
sition systems are always defined in abstract classes with generics to keep constraints
between data types and to allow users to easily define their own sub-classes. Through
using generics, the types of the vertices and edges can be set as needed. Their concrete
subclasses like Graph or TransitionSystem only contain their constructors and need only
to specify the vertex data type over generics. This way, clarity in the data structure and
an intuitive depth of inheritance is ensured.

• The package graph contains all classes which are needed to define a graph structure.
Weighted graphs can be found in the sub-package weighted.

• The traverse package contains both classes and interfaces for traversals through
data structures and algorithms using traversal classes.

• Classes in the package visualization can be used to visualize graph structures.
For each structure, a corresponding component class is defined.

• Transition systems are defined in the package ts. For labelled transition systems
there is another sub-package named labeled. Two more packages contain classes
for serializing and parsing transition systems.

2 Basic Graphs

Although JAGAL has some visualization capabilities, we first consider underlying classes
and interfaces.

All graph classes build upon the abstract class AbstractGraph<V,E,U>, where V is the
vertex type, E the type of edges, and U the type of the element enclosed by the vertex. The
class defines basic operations, which can be performed on graphs, like adding and removing
vertices and edges, getting meta information about a graph and its components like the in-
and out-degree of a vertex, its successors etc., and getting topological information about
a graph and its components.

The basic classes for vertices and edges are called Vertex<U> and Edge<V>, which depend
on the vertex type. Based on these classes, two graph types are predefined:

1. A directed unweighted graph only allows directed edges, which aren’t weighted. Its
main class is Graph<U>, where U defines the type of the vertex labels.

2. A directed weighted graph complements the unweighted graph by edge weights, which
are floating number values. The class WeightedGraph<U> therefore uses the class
WeightedEdge<V> for the edges.

In the following sections some simple examples for the visualization of the graphs and
use cases with graph algorithms using these classes are presented.

2.1 Creating a Directed Graph

As an example a simple directed graph is created. As type of the vertex elements we
choose Integer.

2



// Graph<U> where U is the type of the vertex elements

Graph<Integer> g = new Graph<Integer>();

// Add some vertices

g.addVertex("A", 4);

g.addVertex("B", 3);

g.addVertex("C", 1);

g.addVertex("D");

g.getVertex("D").setElement(2);

g.addVertex("E", 8);

// Add some edges

g.addEdge("A", "B");

g.addEdge("B", "C");

g.addEdge("B", "D");

g.addEdge("C", "A");

g.addEdge("C", "D");

g.addEdge("D", "E");

g.addEdge("E", "B");

// Let’s take a look at the result

System.out.println(g);

System.out.println(g.getVertex("E").getElement());

Printing out the graph results in the following output:

Graph: V=[A, B, C, D, E]

E=[(A -> B), (B -> C), (B -> D), (C -> A),

(C -> D), (D -> E), (E -> B)]

Note that vertices are created with their name. When creating edges, they also refer
to the vertex names instead of the vertex objects. If a vertex with a given name already
exists, the addVertex()-method does not add a new vertex and returns false. If an
unknown vertex name is referred to when creating an edge, the addEdge-method throws
a VertexNotFoundException.

Now it is possible to request some meta information from the graph. For example the
in-degree of the vertex D can be retrieved using g.inDegreeOf("D") (which would result
in 2) and the method g.isDrain("A") returns false, since the vertex A has a successor.

2.2 Creating a Directed Weighted Graph

JAGAL already comes with a class for directed weighted graphs. In this section, we create
a simple graph with weighted edges. Weights are floating number values. By default all
edges have a weight of 1.0.

// WeightedGraph<U> where U is the vertex element type

WeightedGraph<Integer> gw = new WeightedGraph<Integer>();

// Add some vertices

gw.addVertex("A");

gw.addVertex("B");

gw.addVertex("C");

gw.addVertex("D");

gw.addVertex("E");

3



// Add some edges

gw.addEdge("A", "B");

gw.addEdge("B", "C");

gw.addEdge("B", "D", 2.0);

gw.addEdge("C", "A", 3.4);

gw.addEdge("C", "D");

gw.addEdge("D", "E");

gw.addEdge("E", "B");

// Let’s take a look at the result

System.out.println(gw);

The output of the weighted graph is the following:

Graph: V=[D, E, A, B, C]

E=[(A-1.0->B), (B-1.0->C), (B-2.0->D), (C-3.4->A),

(C-1.0->D), (D-1.0->E), (E-1.0->B)]

2.3 Visualizing Graphs

The JAGAL library also comes with visualization capabilities. With the following com-
mand a new JFrame gets created, where the class DisplayFrame is part of the TOVAL
library (see figure 1a):

new DisplayFrame(new GraphComponent(g), true);

For the visualization of weighted directed graphs, JAGAL comes with another compo-
nent class named WeightedGraphComponent. It complements the standard graph repre-
sentation by edge labels with the specified weights. The resulting graph visualization can
be seen in figure 1b.

new DisplayFrame(new WeightedGraphComponent(gw), true);

3 Graph Traversal

Graphs implement the interface Traversable, which has methods to get the predecessors
and successors of a vertex and thus gives the opportunity to traverse a graph.

This section will show some examples of graph algorithms using traversal.

3.1 Tarjan’s Strongly Connected Components

As a use case, the traversal package contains an implementation of Tarjan’s SCC algorithm,
which divides a graph in its strongly connected components. A graph component is called
strongly connected, if all pairs of vertices inside a component are reachable by each other.

As an example we create a new graph and run Tarjan’s algorithm on it:

Graph<Integer> gt = new Graph<Integer>();

gt.addVertices(Arrays.asList("A", "B", "C", "D", "E", "F"));

gt.addEdge("A", "B"); gt.addEdge("B", "C"); gt.addEdge("C", "A");

gt.addEdge("D", "B"); gt.addEdge("D", "C"); gt.addEdge("D", "E");

4



(a) (b)

Figure 1: Visualization of an instance of the Graph class and an instance of the
WeightedGraph class.

gt.addEdge("E", "D"); gt.addEdge("E", "F"); gt.addEdge("F", "C");

SCCTarjan tarjan = new SCCTarjan();

System.out.println(tarjan.execute(g));

The method getStronglyConnectedComponents() in the class TraversalUtils also
uses this algorithm. It results in the following three components:

[[A, B, C], [D, E], [F]]

A

B

C

D E

F

3.2 Custom Algorithm Using Traversal: Weakly Connected Graph

Besides using existing algorithms, it is also possible to use the Traversal interface to
define custom algorithms. In this example, we want to know whether a given graph is
weakly connected. A directed graph is called weakly connected if all pairs of edges are
connected ignoring the direction of an edge.

5



The property can be retrieved in linear time by checking if all vertices are reachable over
a weak connection from one random vertex. For this, we need a method, which recursively
traverses all neighbours of a node. Neighbours can be retrieved by merging children and
parents of a vertex. Vertices which are reachable from the starting vertex are stored in a
set nodes.

private static <V extends Object> void weakConnectivityRec(

Traversable<V> graph, V v, Set<V> nodes) {

Set<V> neighbours = new HashSet<V>();

neighbours.addAll(graph.getChildren(v));

neighbours.addAll(graph.getParents(v));

for (V n : neighbours) {

if (false == nodes.contains(n)) {

nodes.add(n);

weakConnectivityRec(graph, n, nodes);

}

}

}

The algorithm collects all weakly connected vertices from an arbitrary vertex. A graph
is weakly connected, if the set of weakly connected vertices is as large as the set of vertices
in the graph. Since the set of connected nodes also contains the start node, we just test if
this set is smaller than the set of all vertices.

public static <V extends Object> boolean isWeaklyConnected(

Traversable<V> graph) {

for (V node : graph.getNodes()) {

Set<V> nodes = new HashSet<V>();

weakConnectivityRec(graph, node, nodes);

if (nodes.size() < graph.getNodes().size())

return false;

break;

}

return true;

}

Though this code snippet looks unnecessarily confusing, the outer loop, which gets
interrupted after the first iteration, is needed to retrieve an element from a Collection

data type.
The class TraversalUtils also contains methods to retrieve meta information of a

graph and its components. To check if a graph is strongly connected, we can use the static
method isStronglyConnected. Furthermore it’s worth to take a look at the method
implementations in that class, since they are using the Traverser class, which already
implements the depth-first-search and the breadth-first-search. As a consequence the
implemented methods stay very compact.

3.3 Coloring

A coloring of graphs assigns a color to each vertex, such that no neighboured vertices have
the same color. Graph coloring algorithms try to get along with a minimum number of

6



different colors. If a graph can be colored using k different colors, it is called a k-coloring
graph. For example it is possible to color a world map with four different colors, such that
no neighboured countries have the same color (Four color theorem).

The Coloring class represents a coloring of vertices. The class GraphColoringFactory
has a method exactGreedyColoring to create a coloring for a graph.

Graph coloring can be used to determine whether a graph is bipartite i.e. it can be
separated in two disjoint groups of vertices, which are not adjacent among themselves. In
this case, there must be a coloring for the graph with only two different colors:

public static <V extends Object> boolean isBipartite(Graph<V> g) {

Coloring c = GraphColoringFactory.exactGreedyColoring(g);

return c.getColorGroups().size() == 2;

}

The following two graphs show examples of the algorithm. The left one is bipartite,
since it can be colored using two colors, where The right graph needs three colors and
therefore is not bipartite.

A B C

D E F

A B C

D E F

4 Transition Systems

Besides graph representation and traversal, JAGAL also considers transition systems.
Transition systems are used in the computation and automata theory and describe possible
states in a state-based system. Relations between the states are called transitions.

A transition system has a non-empty set of start states and a set of final states.
Transition systems can be represented by directed graphs, where the vertices are states

connected by transitions. The edges can either have labels or not.
In the following sections we will show the different types of transition systems as well

as JAGAL’s serialization and parsing functionalities.

4.1 Unlabelled Transition Systems

A good example for transition system without transition labels is a finite-state machine
representing a traffic light. It has the states S = {r, ry, g, y}, where r, y, and g stand for
the colors red, yellow, and green. While operating the traffic lights change the states in
the following order, where all of the states can be start states:

r → ry → g → y → r

In the JAGAL framework, this transition system can be built in the following way:

7



TransitionSystem ts = new TransitionSystem();

ts.addState("r");

ts.addState("ry");

ts.addState("y");

ts.addState("g");

ts.addStartState("r");

ts.addRelation("r", "ry");

ts.addRelation("ry", "g");

ts.addRelation("g", "y");

ts.addRelation("y", "r");

Since the class TransitionSystem inherits from AbstractGraph and thus implements
the Traversable interface, we can traverse through a transition system and also use all
the methods we can use on graphs.

4.2 Labelled Transition Systems

Transition systems can be complemented by transition labels. In the graph representation,
transition labels are edge labels. Labels can represent different things depending on the
user’s interest. Often, they are seen as conditions that must hold true or events that must
be triggered to reach the next state.

As an example we want to build a deterministic finite automata (DFA) with the alphabet
Σ = {0, 1}, that only accepts words containing the symbol sequence 01. The corresponding
transition system looks like the following:

astart b

c d

1

0

1

0

1
0 0, 1

The transition system can also be represented in JAGAL:

LabeledTransitionSystem l = new LabeledTransitionSystem();

l.addState("a");

l.addState("b");

l.addState("c");

l.addState("d");

l.addStartState("a");

l.addEndState("d");

l.addEvent("0");

8



l.addEvent("1");

l.addRelation("a", "b", "1");

l.addRelation("a", "c", "0");

l.addRelation("b", "b", "1");

l.addRelation("b", "c", "0");

l.addRelation("c", "c", "0");

l.addRelation("c", "d", "1");

l.addRelation("d", "d", "0");

l.addRelation("d", "d", "1");

Since we defined exactly one start state and the transition system is deterministic, the
finite-state machine is a DFA. This property can also be checked by using the isDFA()

method. With the method acceptsSequence(String... s) we can check if an input
sequence gets accepted by the DFA or not:

System.out.println(l.acceptsSequence("0", "0", "1", "0"));

// true

System.out.println(l.acceptsSequence("1", "1", "0", "0"));

// false

Once again we can use the visualization classes to generate a graphical output of the
transition system (see figure 2):

new DisplayFrame(new LabeledTransitionSystemComponent(l), true);

Figure 2: Visualization of an instance of the LabeledTransitionSystem class.

9



4.3 Serializing Transition Systems

To store transition systems and make them available for other users and tools, the JAGAL
framework comes with a serialization functionality. Although the serializing classes are
prepared for supporting different output formats, currently only the Petrify file format is
supported. The serializer takes a transition system, the target format and the path as
argument and serializes the transition system.

TSSerialization.serialize(l, TSSerializationFormat.PETRIFY,

"test-ts", "/arbitrary/path");

The labelled transition system gets stored under the file name test-ts.sg. Since l

refers to the transition system from the last subsection, the generated file contains the
following information (a # indicates the beginning of a comment):

.outputs 1 0 # Labels

.state graph

a 1 b # Transitions

a 0 c

b 1 b

b 0 c

c 0 c

c 1 d

d 0 d

d 1 d

.marking {a} # Start marking

.final {d} # Final states

.end

4.4 Parsing Transition System

Transition systems in the Petrify file format can also be parsed using JAGAL’s built
in parser. It recognizes the file type by the file extension and returns an instance of
AbstractLabeledTransitionSystem.

AbstractLabeledTransitionSystem lts = TSParser.parse(

new File("/arbitrary/path/test-ts.sg"));

The resulting transition system can be used just like any other transition system object
we defined by hand.

10


	Introduction
	Library Dependencies
	Package Structure

	Basic Graphs
	Creating a Directed Graph
	Creating a Directed Weighted Graph
	Visualizing Graphs

	Graph Traversal
	Tarjan's Strongly Connected Components
	Custom Algorithm Using Traversal: Weakly Connected Graph
	Coloring

	Transition Systems
	Unlabelled Transition Systems
	Labelled Transition Systems
	Serializing Transition Systems
	Parsing Transition System


